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This paper describes the procedure of computational determination of the temperature field of a prismatic
workpiece heated in a continuous furnace with account for the temperature dependence of the thermal dif-
fusivity. For a numerical solution of the two-dimensional heat conduction equation with boundary conditions
of the 3rd kind, an implicit scheme has been used. The calculated time dependences of the temperature for
three characteristic points of the cross-section of the prismatic steel workpiece have been compared to the ex-
perimental data. The heat transfer coefficients at which the experimental data and the calculated values have
a minimum discrepancy have been determined.

Introduction. It is known that the thermophysical and mechanical characteristics of metals vary with changing
temperature. Thus, according to the thermometric data for steel 20 workpieces before rolling [1], the thermal diffusiv-
ity decreases by a factor of 3 upon heating from 500 to 1000 K. The existence of pronounced temperature depend-
ences of the basic thermophysical and deformation-strength characteristics of structural materials (specific heat capacity,
heat conductivity coefficient, thermal diffusivity, ultimate and yield strengths, Young’s modulus, etc.) leads to the ne-
cessity of refining the estimates of temperatures and thermal stresses with the aim of saving energy and upgrading the
quality of metal products.

Taking into account the rather complex form of the temperature dependences of the above indices, their ap-
proximations in the form of piecewise linear functions are used [2]. Numerical solution of such problems entails taking
into account the nonlinearity of the differential equation and the boundary conditions, due to which it is necessary to
use grid methods in which the temperature distributions inside the region and on its surface are given at nodal points.
The change in the thermophysical coefficients in the process of heating is determined by referring them to the tem-
peratures at the nodal points at the beginning of the time intervals and checking the stability condition. As applied to
the conditions of continuous casting of workpieces, the numerical solution can be simplified by passing to a two-di-
mensional formulation of the problem, since the length of the ingot formed exceeds many times the dimensions of its
cross-section.

As an example, we consider below the conditions of heating in a continuous furnace a prismatic steel work-
piece with heat exchange by the Newton law. Identification (adjustment) of the heating model is carried out by cor-
recting the heat transfer coefficients proceeding from comparison of the experimental and calculated time dependences
of temperature at control points.

Formulation of the Problem. Let us consider the mathematical formulation of the problem on the heat
propagation in the cross-section of a steel workpiece heated in a continuous furnace.

The quasi-linear heat conduction equation with variable thermal diffusivity [1] is of the form
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the boundary conditions are u(x, y, 0) = u0 = 393 K; the boundary conditions of the 3rd kind modeling the heat
propagation by the Newton law are

∂u (x, y, t)
∂n



Γ

 = α1 (u (x, y, t) − θ (t)) .

Here ∂ ⁄ ∂n is a derivative with respect to the inner normal to the workpiece edge, 1 ⁄ m.

We make a substitution v(x, y, t) = 
1

a2(u0)u0
    ∫ 

u0

u(x,y,t)

 a2(u)du. In particular, the dependence of the thermal diffusiv-

ity with a dimensionally of one square meter per second for the material steel St3, according to [3], can be approxi-
mated by three linear parts:

a
2
 (u) = 











1.86⋅10
−5

 − 1.45⋅10
−8

u ,   373 K ≤ u ≤ 1023 K ;

− 1.416⋅10
−5

 + 0.775⋅10
−8

u ,   1023 K ≤ u ≤ 1273 K ;

5.7⋅10
−6

 ,   1273 K ≤ u ≤ 1423 K .

Integrating and solving the square equation, we obtain the dependence of the dimensionless temperature on the
new variable v:
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Differentiating the dependence obtained with respect to the variable v, we get the expression
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The substitution made permits formulating the problem as

ϕ′ (v) 
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 ,   v (x, y, 0) = 0 ,   
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with the boundary conditions of the 3d kind 
∂u(x, y, τ)

∂n



Γ

 = α1(u(x, y, τ) − θ(τ)).

To reduce the number of variables, it is expedient to bring the above mathematical formulation of the problem
into a dimensionless form. To this end, we used the following characteristic constants: the initial temperature of the
workpiece u0 = 393 K, the length of the cross-section side of the workpiece l0 = 0.125 m, the characteristic time t0
= 9⋅104 sec, and a2(u0) = 1.29⋅10−5 m2 ⁄ sec. As the final result, the problem is written in the form
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 = 
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Γ

 = α1 (u (v (x, y, t)) − θ (t)) ,   θ (t) = 2.6 + 22.33t ;

ϕ′ (v) = 
l0
2
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1

a
2
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 .

Construction of the Grid Analog. To obtain a numerical solution, consider the grid analog of the heat con-
duction equation at i, j = 0, ..., 10 obtained by the discretization of the cross-section of a prismatic workpiece in the
form of 10 × 10 partitions into parts of constant length with the number of nodes 11 × 11 (Fig. 1). We shall further
use the discrete analog of the dimensionless temperature and finite-difference schemes with weights [4, 5]:
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Here Λx is the difference analog of the second derivative, which is calculated by the formula
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For the best approximation [6] of the sought function by the discrete analog, we assume σ = 0.5. The finite-
difference scheme of the solution has the form
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Fig. 1. Discretization scheme of the workpiece cross-section.
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For the approximation of the boundary conditions, we use the following difference analogs:
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As in the case of the grid analog of the heat conduction equation, for the best approximation of the boundary condi-
tions we assume σ = 0.5. By simple mathematical manipulations, we get from the grid analog of the heat conduction
equation the following system of linear algebraic equations:
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Likewise, we obtain a system of linear equations from the grid analog of the boundary conditions of the 3d
kind
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To solve the obtained nonlinear system of equation, we use the iteration method of [4, 5] substituting into the

nonlinear part the known values of y
   (s)t+1

i,j  and into the linear parts, accordingly, y
    (s+1)t+1

i,j . As a result, we obtain a system

including 121 algebraic equations for y
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i,j  (of these, 81 equations correspond to the approximation of the quasi-linear

heat conduction equation and 40 equations form a grid analog of the boundary conditions of the 3d kind). We solve

the system and find a numerical solution for the (s + 1) iteration.
The system of linear algebraic equations obtained form the grid analog of the quasi-linear heat conduction

equation has the form
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The equations found from one of the boundary conditions for the (s + 1) iteration are written as follows:
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We assume the values of the s-iteration to be known and the values of the zeroth iteration to be equal to the
values in the previous layer. The initial conditions are: yi,j

0  = 0, where i, j = 0, ..., 10. Identification of the heating
model was carried out by correcting the heat transfer coefficients through minimization of the deviation of the experi-
mental and calculated time dependences of temperature at control points of the workpiece cross-section.

Numerical Approbation. The temperature field of the prism with a cross-section of 0.125 × 0.125 m2 was
calculated by means of the Mathcad 2001 program. To reduce the grid equations to a system of algebraic equations,
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the grid values were transformed to a vector by the formula x11i+j = yi,j
t . The system of algebraic equations with a de-

terminant other than zero was solved by the matrix method described, e.g., in [6]. We used the reduced external heat
transfer coefficients for four faces of the workpiece α1, α2, α3, α4, where α1 corresponds to the left lateral face, α2
— to the upper bound, α3 — to the right lateral face, and α4 — to the lower bound. We specified the space-time
discretization parameters h = 0.1, ∆τ = 0.004, the initial temperature of the workpiece u0 = 393 K, and the manner of
the temperature change in the furnace in the dimensionless form θ(t) = 2.6 + 22.33τ. In the considered example of
calculation, to obtain a deviation of the values at steps (s + 1) and (s) not exceeding 1%, no more than three iterations
were needed. The values of the above coefficients for instants of time in the time interval of heating 0–60 min with
a step of 6 min are given in Table 1.

A comparison of the results of the calculations to the experimental values of the temperature at control points
of the cross-section is shown in Fig. 2. It should be noted that there is a discrepancy between the values of the ex-
ternal heat transfer coefficients for the left and right lateral faces of the cross-section of a geometrically symmetric
workpiece, which can be explained by the nonidentity of the heat flows from on the left and on the right under real
heating conditions.

In using the above method of adjustment, the deviation of the calculated temperature values from the experi-
mental data in the workpiece heating time interval of 60 min does not exceed 2% at edge points and 10% in the cen-
ter of the cross-section.

To calculate the temperature field in the following heating zones, it is necessary to use the corresponding de-
pendences for the furnace temperature and the new initial conditions in the form of the temperature values found in
the previous step by the algorithm described above. Taking into account the existing experimental data, adjustment of
the heating model is carried out by recalculating the reduced external heat transfer coefficients on each face of the
workpiece cross-section.

Conclusions. The proposed method for numerical solution of the quasi-linear heat conduction equation with
boundary conditions of the 3d kind makes it possible to find with a reasonable accuracy the temperature field in heat-
ing a prismatic steel workpiece with account for the temperature dependence of the thermal diffusivity. The proposed

TABLE 1. Reduced External Heat Transfer Coefficients Depending on the Heating Time

Time interval, min α1 α2 α3 α4

 0 0.025 0.17 0.016 0.15

 6 0.08 0.33 0.04 0.27

12 0.17 0.39 0.12 0.3

18 0.24 0.68 0.21 0.54

24 0.24 0.79 0.17 0.61

30 0.27 0.95 0.17 0.62

36 0.48 1.29 0.32 0.55

42 0.46 1.15 0.49 0.41

48 0.51 1.35 0.58 0.23

54 0.65 1.41 0.63 0.34

Fig. 2. Time dependence of the temperature in the middle of the upper bound
(a), for the angular point of the lower bound (b), and for the center of the
lower bound (c). Curves and dots show, respectively, the calculation and the
experiment.
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procedure of identification of the developed mathematical model on the basis of minimization of the deviation of cal-
culation results from the experimental data permits overcoming difficulties of calculating heating conditions connected
with the specification of external heat transfer coefficients.

NOTATION

a0 = 1.45⋅10−8, modulus of the proportionality coefficient in the temperature dependence of thermal diffusivity
in the 373–1023 K range, m2 ⁄ (sec⋅K); a2(u), temperature dependence of the thermal diffusivity, m2 ⁄ sec; a2(u0), ther-
mal diffusivity of the material at temperature u0, m2 ⁄ sec; A = −0.416⋅10−5, constant in the temperature dependence of
the thermal diffusivity in the 1023–1273 K range, m2 ⁄ sec; B = 0.755⋅10−8, proportionality coefficient in the tempera-
ture dependence of the thermal diffusivity in the 1023–1273 K, m2 ⁄ (sec⋅K); h, steps of space coordinate discretization;
l0, characteristic length, m; n, inner normal to the bound of the workpiece cross-section, m; t, time reduced coordinate,
min; t0, characteristic time, sec; u, temperature, K; u0, initial temperature, K; u(x, y, t), coordinate and time depend-
ence of temperature, K; v, variable; x, y, coordinates in the sectional plane, m; yij

t , discrete analog of the function of
dimensionless temperature in the node ij at a reduced instant of time t × τ; α, reduced external heat transfer coeffi-
cient; Γ, bound of the workpiece cross section; θ(t) = 1023 K + 0.0975t, low of furnace temperature change, K; Λy,
difference analog of the second derivative with respect to the y coordinate; σ, weight factor; τ, time reduced coordi-
nate; ∆τ, time step of discretization. Subscripts: i, line number of the discrete analog; j, column number of the discrete
analog; ′, sign of the derivative.
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